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A Reinterpretation of Dense Gas Kinetic Theory 

R. F. Snider 1 

Received June 27, 1990; final December 17, 1990 

In dense gas kinetic theory it is standard to express all reduced distribution 
functions as functionals of the singlet distribution function. Since the singlet dis- 
tribution function includes aspects of correlated particles as well as describing 
the properties of freely moving particles, it is here argued that these aspects 
should more clearly be distinguished and that it is the distribution function for 
free particles that is the prime object in terms of which dense gas kinetic theory 
should be expressed. The standard equations of dense gas kinetic theory are 
rewritten from this point of view and the advantages of doing so are discussed. 
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1. I N T R O D U C T I O N  

The classic work of Bol tzmann (1~ introduced an equation for the evolution 
of the one-particle distribution function, taking into account  the free 
mot ion  of a particle and how it is affected by collisions with a second 
particle. It has been the object of countless efforts to derive Boltzmann's  
equat ion in a r igorous way, or, more  correctly, to accurately spell out the 
condit ions and range of  applicability for which it is valid. As well, the 
extension to include quan tum effects, bound  states, and three- and higher- 
particle collisions have been developed. A general review of the first century 
of  the Bol tzmann equat ion is contained in the proceedings (2) of the con- 
ference celebrating the centennial. 

In extending the Bol tzmann equation to higher density and thus to 
include three- and higher-particle collisions, it has seemingly been an 
unwrit ten rule that  a closed equat ion for the singlet distribution function is 
required. Obviously this is limited to the case in which the potential 
supports  no bound  states, a restriction which is also made in this paper. 
Thus, the binary, ternary, etc., distribution functions are represented as 
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functionals of the singlet distribution function. This philosophy has been 
especially espoused by Bogoliubov, (31 who postulates that all of the higher- 
ordered distribution functions have, after an initial transient time, their 
time dependence determined solely as functionals of the singlet distribution 
function. The present work questions whether this is the best way of 
representing the time dependence of a dense gas. It is argued that since the 
singlet distribution function includes the motion of a particle in the process 
of interacting with one or more other particles as well as the contribution 
from particles that are moving freely, it is appropriate to separate these 
contributions and to treat the free motion part as the basic unit for which 
a kinetic equation is to be obtained, Lalo~ and co-workers (4-6~ have 
recently stressed that the free motion should play a more explicit role in the 
formulation of kinetic equations, but their method of incorporation of free 
motion differs significantly from that of the present work. In the present 
paper, connections with the standard approach (7"8) are made and the pre- 
sent work can be considered as a reinterpretation of the standard kinetic 
equations. However, if the equations are truncated at a particular level of 
multiparticle collisions, different results are obtained. An advantage of the 
present scheme is that for any truncation of the kinetic equations (at some 
multicollisional level), the singlet and pair density operators reduce at equi- 
librium to their canonical form. While this is true in the standard treatment 
for classical systems, at least to third order in the density, (9) the standard 
approach would, in particular, require the equilibrium singlet density 
operator for a quantum system to be a Maxwellian, which is not true at 
higher densities. (1~ In contrast, the correct equilibrium behavior is 
automatically reproduced by the present method (to the level of multipar- 
ticle collisions of the truncation). The same comment is applicable to the 
expression for the pressure. The correct quantum second virial coefficient is 
obtained by the present approach, whereas the usual method ~ gives an 
incorrect result, as emphasized by Lalo~ and Mullin. (.3) This was in fact 
the motivation for recently introducing (t4) a density-corrected quantum 
Boltzmann equation. The present work shows that this proposed equation 
is closely related to the standard method of approach, (7'8) differing only in 
emphasis and method of truncation of the general development. 

In this work, a quantum formalism for a gas obeying Boltzmann 
statistics is used, for example, the singlet density operator p(1) is nor- 
malized by tracing to the number of particles N according to 

Trl plI~=N (1) 

The results are also applicable to classical systems if the associations 

p~l) ~ h3fO)(rl, Pl) and h-3 ff dr~ dpl 
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are made. Here r~ and p~ are the position and momentum of particle 1. 
This association is the same as that involved in the Weyl (15) corre- 
spondence of quantum operators and phase space functions, in particular 
the Wigner function. (~6) But of course for a classical system, the quantum 
Liouville superoperator (see below) must be replaced by its classical coun- 
terpart, the Liouville operator. A shortened derivation of the equations for 
dense gas kinetic theory is given in Section 2 based on the initial time 
development of the reduced density operators, assuming that the N-particle 
density operator completely factors at the initial instant of time (t = 0). 
This provides a setting on which to base the subsequent discussion 
connecting the different kinetic equations (see Section 3). 

2. E V O L U T I O N  H I E R A R C H Y  FOR AN N - P A R T I C L E  S Y S T E M  

An isolated N-particle system (in a box of volume V with some 
appropriately prescribed boundary conditions) is completely described by 
a density operator p(X). As an isolated system, the time dependence of ,0 (N) 
is governed by the von Neumann or quantum Liouville equation and the 
associated superoperator Lf (N~, namely 

�9 ~ p ( N )  
l = ~f)(N)p(N) ~ h 1 [H(N)p(~V) _ p(N)H(N)  ] (2) 

defined in terms of the N-particle Hamiltonian H (N). The latter is assumed 
to consist of a sum of one-particle kinetic energy operators ~ ,  for the 
j th  particle, and pair potentials Vj~ acting between particles j and k. 
Standardly, p(N) is normalized to 1, 

Trl,..., N p(N)  = 1 (3) 

Reduced density operators are defined 

N~ p(S) ~ ~(lv) 
( N - s ) !  Trs+ 1'" m P (4) 

so that these are normalized to the number of ordered sets of s-particles in 
the N-particle system. It follows that the reduced density operators satisfy 
the BBGKY (3'17 19) hierarchy 

OP (s) S(S)p(S~ ~V(s, + 1~ i - - ~ -  = ,+Trs+  a 1)p (~ (5) 
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Here ~(s) is the Liouville superoperator for s-particles and the potential 
superoperator ~,,~) is the sum 

s 

C/j,. 1)~- Z ~),s+l (6) 
j = i  

of individual potential superoperators, each associated with a pair potential 
according to 

VikA=--h-I[VskA-- AV:k] (7) 

for action on an arbitrary operator A. 
Since all observables of standard interest consist of a sum of one- or 

two-particle quantities, it is sufficient to calculate the time evolution of the 
singlet and pair density operators. These are then connected by the first 
BBGKY equation. It is assumed in the following that the N-particle density 
operator factors completely at the zero of time, so that it can be written 

pl,...,N(0) (8) 

As always, a superscript denotes the number of particles, while the sub- 
scripts label the particular particles involved in the operator. Essentially 
this is thought of as representing N free (independent) particles. 

The quantum Liouville equation (2) can be formally solved as 

p(N)( t )  = e i~(NItp(N)(o) (9) 

If there was no potential of interaction, then the N-particle system would 
evolve with each particle moving freely. Under such motion the factored 
initial density operator remains factored and the singlet density operator 
for particle j becomes 

~o,/y (t) = e-'X@~x)(o) (10) 

where ~j, defined as acting on an arbitrary operator A by 

~ffjA - h-~[KjA - AK~] (11) 

is the kinetic superoperator for particle j. The free motion described by 
Eq. (10) is emphasized by labeling the time-dependent singlet density 
operator with a subscript f and, in anticipation of latter notation, by a 
special symbol to emphasize its completely free motion, for all time. The 
effect of the interparticle potential is to correlate the particles and it is 
this motion which must be approximated in developing a kinetic theory. 
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This difference between the free and full motion of the N-particle system is 
determined by the evolution superoperator 

~r N) (  t ) =--- e -  i c~(N)t g iJ ' (N) t  (12) 

where J l (N)= Y.j ~ j  is the total kinetic energy superoperator. Thus, the 
N-particle density operator at time t is given by 

The time-dependent reduced density operators are found by taking the 
appropriate trace of Eq. (13) according to Eq. (4). 

Evolution superoperators ~/r associated with the motion of an 
isolated set of s particles follows as a simple generalization of Eq. (12). 
Exploiting the analogy between the equilibrium distributions Ws(1/kT)- 
exp(-H(S)/kT) and the evolution superoperators generalizing Eq. (9), or 
better Eq. (12), as discussed, for example, by Cohen, (2~ it is possible 
to consider a hierarchy of cluster evolution superoperators for time t 
according to the iteration scheme 

~'~*)_= ~ )  = 1 

~/, (2) ~ f  (2) 1 
jk ~ - jk (14) 

~ ( 3 )  ~ p  (3) __ ~ / / ' ( 2 )  __ qA/ ' (2)  __ q j / ' ( 2 )  -t- 2 
j k l  ~- j k l  j k  "" j l  " k l  

In this way the evolution of the N-particle system can be written as a 
cluster expansion 

div l 

with the somewhat standard notation (2~ that the sum is over all partitions 
of the N particles into sets and the product is over all sets l for a given 
partition. From this, it follows that the singlet density operator is given at 
time t by 

p~l~(t) = gof,(t) + Tr2 q/12~(t) fof2(t) 

+ 1 Tr23 (3) (16) ~//123(t) gOf2(t) ~Of3(/)q- ... 

In a different notation and for classical mechanics this is the same as 
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Eq. (2.19) of ref. 8. The analogous expression for the pair density operator 
is 

P2 (t) -~- @/12 (t) ~/Jf2(t) 

~'(3) t (17) + T r  3 ~u 123( ) ~Ofl(t) ~Of2(t) fOf3(t) + "'" 

[compare Eq. (2.20) of ref. 8]. In obtaining these results use has been made 
of the fact that a trace over all particles in a cluster of two or more 
particles vanishes for the cluster evolution superoperator, i.e., 

Trl ...... q/~!.,,(t) A = 0 for s > 1 

and that different particles contribute equally after being traced over. The 
latter property allows sums over differing colliding partners to be replaced 
by a typical particle times the number of possible colliding partners. The 
total number of particles N is assumed large, so that such counting factors 
may be simplified. 

It is now desirable to examine the large-time limit, t ~ ~ ,  of Eqs. (16) 
and (17). For the interaction of pairs of particles, the limit of ~'(2~(t) has 
been treated in detail by Jauch etal.  (21~ and the limit gives the Moller 
superoperator s (2~ provided that the potential is short-ranged and there 
are no bound states. Analogous limits of ~(s)(t)  for arbitrary s can be 
considered to give the Mr superoperators (2 ('1. Cohen (8~ has used the 
equivalent classical expressions and interpreted the results when inserted 
into Eqs. (16) and (17) as a convergent density expansion of the evolution 
of the (classical) distribution functions. However Eqs. (16) and (17) involve 
an expansion in terms of the number of collisions undergone by the par- 
ticles over all time, so that truncating these equations to retain only the 
first few terms is valid only over the course of the equivalent number of 
collisional mean free times. To account for the sequence of successive colli- 
sions that the gas particles undergo in macroscopic times requires keeping 
an inordinate number of terms. In contrast, for example, the Boltzmann 
equation takes into account the change that occurs due to one collision in 
terms of the present state singlet density operator, with all of the effects of 
the previous collisions incorporated into the present state of the singlet 
density operator. To get such a description, it is necessary to rearrange the 
infinite series to isolate the effect of the latest collision. It should also be 
remarked that the natural interpretation of the large-time limit of the 
u.U(s~(t) is for an isolated (s-particle) collision, with the effects of previous 
(isolated) collisions treated by some other method. Green (7) derived the 
classical analog of Eqs. (16) and (17) [his Eqs. (15a) and (15b)], but he 
then introduced a concept of connectedness which is interpreted as the 
notion that a set of particles is connected if they have all collided within a 
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time ~ prior to the time t. The time interval r is taken "to be long compared 
to a representative duration of a collision but short compared to the mean 
interval between collisions." It is a basic assumption of Green's work that 
such a z exist so that collisions are localized in space and time, which is 
possible only if the gas is dilute. Green (7~ then divides phase space into 
maximally connected parts and uses this division to resum expansions of 
the form of Eqs. (16) and (17) over disconnected parts. In this way, the 
singlet distribution function (Green's ~) is replaced by its resummation 
leaving only connected sets of particles appearing explicitly in the correla- 
tion functions for two or more particles. It is assumed here that such a 
resummation can be accomplished so that the completely free f@(t) is 
resummed to obtain a "locally" free singlet density operator pi(t), that is, 
describing a particle that has been free for a time period v. It is an aspect 
of the same resummation, that the "full" singlet density operator pU)(t) and 
the higher-ordered density operators may be expressed in terms of Pi by 
equations analogous to Eqs. (16) and (17). The difference in form occurs 
because the cluster correlation (collision) superoperators are now to 
describe only the latest correlating effect (collision). Thus, it is appropriate 
to set the time t appearing in the ~'(t) as not the macroscopic time, but 
the period ~ associated with a time long compared to a typical collision 
duration but short to the average time between collisions; thus, for the 
singlet and pair, 

p ~')(t) = p i , ( t )  + Tr2 q/~.)('c) pi l ( t )  pf2(t) 

+ �89 Tr23 m,(3) r "gg 123' ) /)fl(t)  /)f2(t) P f 3 ( t )  + "'" (18) 

and 

= p l (f) p l (t ) + pyl(t)  pj.2(t) 

+ Tr3 ~u 123, ) pfl(t) pr2(t) Ps3(t) + ""  (19) 

Since only a single isolated s-particle collision is described by ~'(r) in these 
equations, it is appropriate to interpret the large-r limit of ~/r as the 
corresponding Mr superoperator s (~). In this way only isolated colli- 
sion events appear explicitly, while the previous history of the particles that 
are about to collide (including the effect of their prior collisions) is con- 
tained entirely in the properties of ps(t). Equations (18) and (19) describe 
how the singlet and pair density operators are determined by (are 
functionals of) the free density operator Ps. In the following section these 
equations are used as the basis for discussing different forms for generalizing 
the Boltzmann equation. 
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3. GENERALIZED B O L T Z M A N N  E Q U A T I O N S  

The classic Boltzmann equation (1) is an equation describing the time 
evolution of the singlet (classical) distribution function. Green (7) obtains 
such an equation from the classical analog of Eq. (18) by looking at how 
the terms in this expansion change in a time interval At [see his Eq. (56a) 
and the subsequent development]. This is equated to a surface integral of 
particles entering a collision through a variation of the parameter v used to 
define connectedness. Green uses the same argument to get a Boltzmann 
equation for his free distribution function ~ [see his Eq. (48)]. For a quan- 
tum system, the definition of a precise interaction region seems contrary to 
the uncertainty principle, so that this procedure appears inappropriate. 
Even in the classical case of a dense gas I think of z as a fuzzily defined 
quantity and arguments based on small variations of v need to be treated 
carefully. In any event, this is not the method of proceeding that is pursued 
in the following. 

The singlet and pair density operators are expressed as power series in 
the free motion density operator Ps according to Eqs. (18) and (19). 
Moreover, the singlet and pair density operators are also related by the 
first member of the BBGKY hierarchy, Eq. (5), which determines the time 
rate of change of the singlet density operator in terms of the pair density 
operator. With these three equations it is appropriate to eliminate two of 
the three density operators ,Of, p(1), and p(2) to give a closed equation for 
one density operator. The usual choice (3'v'*'22'23) is to look for a closed 
equation for the singlet density operator (distribution function). Cohen's 
method (8) is to assume that Eq. (18) can be inverted to express pf as a 
power series in pO) and to substitute this expansion into Eq. (19) and use 
the first BBGKY equation to give a generalized Boltzmann equation. 
Assuming the series in Eq. (18) converges, it is easy to successively carry 
out its inversion. Using the ~ --+ c~ limit behavior of the ~U (s), namely 

~/U('>(~) , ~ ,  Q(') (20) 

appropriate to times long compared to the time of duration of a collision 
but short compared to the mean free time, and of course short compared 
to macroscopic times, this expansion is 

.:,(t) - -  -Tr2D~12 - 1] p]~)(t) p~1)(t) 

__ 1 'T'). r ( } ( 3 )  0 ( 2 )  (2) (2) _it_ ~(22)  _ 2 ) ]  --23too,23 -~-12 - (2~j2 - 1)(fa13 

x . . . .  
(21) 
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From this the expansion of p(2) in powers of p(1) is obtained using Eq. (19), 

p(2)~ ,~ _ o(2)~(1)tt ~ p(zn( t) 

J -  T r  r 6 ] ( 3 )  _ 6 ) ( 2 ) 0 ( 2 )  _ O ( 2 ) O ( 2 )  -~_ O ( 2 ) ]  
~ 3  I - ~  123 ~ 12 ~ 13 ~" 1 2 " ' 2 3  - - ' ' 1 2 3  

x p]l)( t)  p(2n(t) p~n(t)  + . . .  (22) 

Substitution of this expression for p(2) into the first BBGKY equation (5) 
gives the quantum analog of the generalized Boltzmann equation derived 
by Choh and Uhlenbeck, (23) Green, (7'9~ and Cohen(8'24): 

0,~0) 
i~t'l = <o(n,~(1)+Tr ~4r ()(2),n(1)~(1) 

( ~ t  ~ 1  V 1  - " 1 2 ~ 1 2 / ' 1  / - ' 2  

+ T r 2 3  4/"  I - O ( 3 )  _ _ 0 ( 2 ) 0 ( 2 )  O ( 2 ) O ( 2 ) - ~  O ( 2 ) q  
r 1 2 L ~ 1 2 3  a u 1 2 ~ 1 3  - - ~ 1 2 ~ 2 3  ~ ' ' 1 2  J 

X/Jln(1)~ ( 1 ) n ( 1 )  - I - H 2  H3  " ' '  (23) 

The quantum form for the triple collision term was first derived by 
Lowry, (25) while a related form without the free evolution superoperators 
was obtained by R6sibois. (26) The latter may be satisfactory for a 
homogeneous system, but the contrast between free and interacting motion 
is useful to emphasize even there, since this is crucial for the convergence 
of the Mr superoperators, Eq. (20). 

Alternately, if Eqs. (18) and (19) are directly substituted into the first 
BBGKY equation (5), with the large-time limit of the #/-(s)(~) evaluated 
according to Eq. (20), there results a closed equation for the free density 
operator pj: 

iL- {Pfl "~- -- 1] Lp(1)] at 1 j Tr2 [f2~ 2) PflPf2  

1T~ co(3) _o(2)_o(2)_ , -~(z)+2  ] PZ~PI2PI3+ "'" } -}- 2 xs~ 23 L ~  123 ~ 1 2  "~13  ~ 2 3  

Tr2 (2) .r r()(3) _ o(2)q : ~2f212 Pfa Pf2 + Tr23 (24) r 12 L aa 123 ~ 12 J f l f l  f l f 2 f l f 3  + " ' "  

Since it is the same three equations, namely Eqs. (5), (18), and (19), that 
are involved in obtaining Eqs. (23)and (24), these must be equivalent and 
Eq. (24) may be considered as a reinterpretation of the standard dense gas 
kinetic theory given by Eq. (23). It is argued that this is a more adequate 
way of writing the generalization of the Boltzmann equation since it deter- 
mines the behavior of an independent (free) particle in the gas. Moreover, 
at equilibrium, it is p f  that is Maxwellian and thus represents free particles. 
p f  determines the total singlet density operator according to Eq. (18). This 
involves not only free particles, but also correlated sets of particles. 

822/63/3-4-19 
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Moreover, these correlations are all determined by the free density 
- -  n ( 1 ) n ( 1 )  i s  operator, as, for example, the pair correlation operator p~) r l  v2 

given in terms of the free density operator by Eq. (19). 

4. D I S C U S S I O N  

Two generalizations of the Boltzmann equation have been obtained 
from the same set of starting equations, namely Eqs. (5), (18), and (19). In 
the standard approach, ~3'7'8'22'23) the pair and free density operators (in 
classical mechanics, distribution functions) are eliminated from these three 
equations to give Eq. (23) governing the time dependence of the singlet 
density operator. In contrast, in this paper it has been proposed to 
eliminate the pair and singlet density operators to give Eq. (24) as an equa- 
tion determining the free density operator. If the infinite series of multi- 
particle collisions is kept and convergent, then these equations must be 
equivalent. However, if they are truncated at a certain level of collision 
order, then they can give different results. 

At equilibrium it is expected that the free particle density operator will 
be a Boltzmann distribution with free particle Hamiltonian H ~1), namely 
p f=(nHq)exp ( - -H~ l ) / kT ) ,  where ny is the free particle density, and 
q =  V -1 Trl exp( - -H] l ) /kT)  is the free particle partition function per unit 
volume in a homogeneous system of volume V with Boltzmann's constant 
k and absolute temperature T. It follows from the intertwining property of 
the Mr operators that 

(2 (~) -- = n~exp( -H~.  ) s/kT)/q s (25) 1 ... . . .  / 9 f l  P f 2  " P f s  ..... 

[-Since the restriction has been made to potentials that support no bound 
states, (2~s)1= 1 and the continuous spectrum of H ~s) spans the whole 
space.] It is now easy to show that at equilibrium, Eq. (24) is identically 
satisfied at each collisional level. Since ~* )P f l  = 0 and there is no time 
dependence, the left-hand side of Eq. (24) becomes 

--n 2 ~ l ) e _ H ~ / k T _  n~ Tr23 5~l~[e-I4~S2)3/kr_Ze-~t4~+H~l)/kr] + ... q2 f Tr2 2q3 

In the three-particle term, symmetry between particles 2 and 3 has been 
used to combine terms. The right-hand side of Eq. (24) is similarly reduced 
to 

n 2_ 2Tr2~//~12e H~22)/k~+ 3 3 ,13~,kT 12~ H~))/,kr] nfq Tr23 ~//i2[-e --123' --e ("~2 + + ... f q  

For the first term in the latter expression, Y/J2-~12-(/7(2) ~16/9(1) ~2('~ On 
noticing that the c/,~2) term is identically zero and that the trace over par- ~ 1 2  
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ticle 2 causes the 2~(2~ contribution to vanish, it is seen that the remaining 
5~ 1) contribution is the same as that calculated from the left-hand side of 
Eq. (24). Thus, the binary interaction terms exactly cancel. A similar but 
more elaborate identification leads to the cancellation between the three- 
particle interaction terms. Moreover, the expressions for the singlet and 
pair density operators, Eqs. (18) and (19), become exactly the expressions 
based on equilibrium cluster theory (27-29) with nf/q identified as the 
absolute activity. 

In gas kinetic theory, it is common (3~ to consider the binary colli- 
sion term as determining the local equilibrium distribution function via 
Boltzmann's //-theorem. Thus, the distribution function (density operator) 
appearing in the binary collision operator is expected to be the (local) 
Maxwellian. For Eq. (24) this is the free density operator, which is consis- 
tent with the results obtained using an equilibrium canonical ensemble of 
N particles. For Eq. (23), it is the full singlet density operator that appears 
in the binary collision term. If p(~) is set equal to a (space and time inde- 
pendent) Maxwellian, then it can be shown that this is a solution for 
Eq. (23). But in carrying out this calculation, extensive use needs to be 
made of the homogeneity (spatial independence) of various operators that 
arise in evaluating the terms in Eq. (23). In contrast, the proof that a 
Maxwellian Pr satisfies Eq. (24) can be mostly accomplished using detailed 
cancellation of free motion and collision terms, with homogeneity invoked 
only for the vanishing of 2~)p f  1. It can also be shown that if p(~) is the 
correct equilibrium singlet density operator [from Eq. (18) with Pi a 
Maxwellian], then Eq. (23) is satisfied. Again extensive use is required of 
homogeneity to obtain this result. It is concluded that the condition that 
the kinetic equation is satisfied by the correct equilibrium density operator 
is not a very discriminating criterion. But it is emphasized that when 
Eq. (23) is to be used as the basis for dense gas kinetic theory, the 
equilibrium (and presumably local equilibrium) form for p(~) is not 
Maxwellian. It thus seems that Eq. (24) is the simpler equation to apply 
because the (local) equilibrium form for Pm is Maxwellian. 
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